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Abstract 

One effective privacy protection method utilized in many tech domains, including big data, is 
anonymization, which protects extremely sensitive information from outside parties. Extracting 
enough information from anonymized data while preserving privacy is still difficult, even with major 
developments that promote secondary use of data. Existing systems often convert large data, 
compromising their structure and utility. Excessive modification can hinder the performance of 
mechanisms and their output in real-life circumstances. To solve these problems in our work, we 
suggest and put into practice a hybrid anonymization method that combines k-anonymity and 
Differential Privacy Conditional Tabular Generative Adversarial Network (DP-CTGAN) to produce 
extremely superior quality data that provides insights comparable to actual data while maintaining 
privacy. We implemented the Mondrian and DP-CTGAN algorithms on the UCI-Adult dataset to hide 
extremely private information related to the income of a person from unauthorized viewers. The raw 
data are processed to hide unique individual information from the intermediate data frame. The 
Mondrian algorithm generates a range of unique information, keeping the rest of the information the 
same, which is considered to be a fruitful information set without showing one's private information. 
Our proposed approach produces more reliable anonymized data compared to the present literature. 

Keywords: Privacy Preservation; K-Anonymity; Differential Privacy; Big Data; Mondrian Algorithm; DP-
CTGAN. 
 
1. INTRODUCTION 

Big data pertains to the increasing volume of data that is difficult to manage, process, and analyze 
with traditional database technologies [1]. A firm is inundated with a tremendous amount of structured 
and unstructured data daily. Wu et al. (2016) proposed a far more thorough classification by 
distinguishing 32 unique V’s, providing a multifaceted prism for assessing Big Data attributes [2]. This 
thorough taxonomy emphasizes how complicated things are becoming and how big data analytics 
needs increasingly sophisticated methods. A prevalent characteristic of big data is its diversity, 
meaning it can include various formats such as text, audio, images, and video, among others. Around 
402.74 million terabytes, or 402.74 quintillion bytes, of data are produced per day worldwide as of 
2024. Compared to the 2.5 quintillion bytes generated every day in 2012, this is a significant increase. 
An estimated 147 zettabytes of data will be used globally in 2024, and by 2025, that amount is 
expected to increase to 181 zettabytes. The extensive use of digital technologies, such as cloud 
computing, real-time data processing, and the Internet of Things (IoT), is driving this exponential 
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expansion. Interestingly, more than half of all internet data traffic is now made up of video material.  
The extensive use of digital technologies, such as cloud computing, real-time data processing, and the 
Internet of Things (IoT), is driving this exponential expansion. Interestingly, more than half of all 
internet data traffic is now made up of video material. In recent years, several mechanisms have been 
created to protect the privacy of big data. The amount of data is enormous, it is generated rapidly, 
and the data/information landscape is worldwide (2016) [3]. Consideration should be given to 
lightweight incremental algorithms that can deliver robustness, high accuracy, and minimal pre-
processing delay. The potential of swarm intelligence algorithms has been brought to light by recent 
de- velopments in feature selection techniques. For example, Jain and Purohit (2017) presented a 
modified particle swarm optimization technique and showed how effective it is at choosing pertinent 
features, which enhances classification performance and lowers computing cost [4]. 

Similar to this, Teng et al. (2017) suggested an adaptive feature selection technique that made use of 
V-shaped binary PSO. This method successfully assessed feature subsets as coherent units, improving 
the model’s overall accuracy and global search capabilities [5]. These investigations highlight the 
adaptability and resilience of PSO-based methods in handling the challenges associated with feature 
selection in high-dimensional datasets. In their thorough analysis of big data analytics in smart grids, 
Zhang, Huang, and Bompard (2018) showed how the enormous volumes of data gathered from smart 
meters and sensors may be used for fault detection, predictive maintenance, and real-time monitoring 
[6]. In order to properly handle and evaluate this data and guarantee the dependability and 
effectiveness of smart energy systems, their study highlights the need for sophisticated data analytics. 
In a similar vein, Madadi et al. (2018) investigated how big data analysis might be used to operate smart 
power systems [7]. They talked about how integrating big data approaches can improve system 
operation, protection, and control, which will increase power networks’ sustainability and efficiency. 
Furthermore, the use of big data analytics in smart grid technologies was explained by Misra and Bera 
(2018) [8]. They emphasized how crucial it is to handle and examine sizable, intricate datasets to 
maximize smart grid efficiency and dependability, especially in real-time situations. A range of privacy 
models, such as k-anonymity, l-diversity, and t-closeness, are utilized to protect against potential 
threats to the privacy of disseminated data. In another research [9], the authors provide a threat 
model as in figure 1 that describes the potential privacy hazards associated with disclosing or sharing 
sensitive datasets. In this context, a threat model is a structured depiction of the many sorts of 
adversaries, the information they may hold, and the potential assaults they can launch to breach the 
privacy of persons within a dataset. By incorporating this threat model into our research, we can 
better appreciate the limitations of each privacy technique and argue the necessity for a hybrid 
approach that uses both k-anonymity and differential privacy. 

 

Figure 1: Threat Model for Privacy Attack 
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Privacy-Preserving Data Publishing (PPDP): This is a collection of strategies and tactics designed to 
publish data while safeguarding the privacy of the people whose information is included in the dataset. 
The PPDP attempts to strike a compromise between privacy safeguards and data value. Common 
PPDP techniques include: 

• K-Anonymization: Each record is guaranteed to be identical to at least k-1 others. 

• L-diversity: Within k-anonymous groups, l-diversity introduces variation in sensitive traits. 

• T-closeness: Guarantees that each group’s sensitive attribute distribution closely resembles the 
distribution as a whole. 

• Perturbation: Including noise in data or query results to safeguard personal information used in 
differential privacy. Publishing manufactured data that closely resembles real data but does not 
directly relate to actual people is known as synthetic data generation. 

• Data generalization/suppression is the process of lowering the level of detail in data or 
completely re- moving certain sections for example, displaying age as ”50–60” rather than ”54”. 

The exponential expansion of digital data has raised concerns about the privacy of sensitive 
information. Or- ganizations and researchers must strike a balance between the demand for data 
utility and the requirement to protect individual privacy. Researchers have created a range of privacy-
preserving strategies in response to these issues. A few of the present methodologies are observed 
for the benchmark of our proposed work. 

Raj, Anushree and D’Souza (2019) focus on anonymization methods to protect privacy for data stored 
in the cloud using a k-anonymity algorithm with a MapReduce framework [10]. This paper discusses 
anonymization techniques for privacy protection of data published on the cloud, focusing on the top-
down specification algorithm within k-anonymity. It explores the adaptation of the MapReduce 
framework to process large amounts of big data for anonymization. The implementation involves a 
generalized method using map and reduce phases in two different phases of top-down specification. 
Techniques for anonymizing data are essential for safeguarding sensitive information, particularly 
given the growing volume of data collected by businesses and government organizations. Traditional 
privacy-preserving data mining algorithms are in- sufficient for big data analytics, which are computed 
using MapReduce in cloud environments. The proposed algorithm parallelizes k-anonymity using 
MapReduce, implementing top-down specialization to anonymize data and support privacy 
preservation. 

Kwatra and Torra (2022) suggest a privacy-preserving structure that utilizes k-anonymity by the Mon- 
drian algorithm alongside decision trees within a federated learning environment for data that is 
horizontally divided. [11]. In federated learning, data heterogeneity results in non-IID (non-
independent and identically distributed) data. A new method is introduced to create non-IID data 
partitions by addressing an optimization problem. Each device develops a decision tree classifier and 
shares the root node of its tree with an aggregator. The aggregator consolidates the trees by selecting 
the split attribute that occurs with the highest frequency and subsequently develops the branches in 
accordance with the split values associated with that attribute. Until every node that needs to be 
merged is a leaf node, this cyclical process keeps going. Upon the completion of the merging process, 
the aggregator disseminates the consolidated decision tree to the respective devices. The objective is 
to develop a cohesive machine learning model that integrates data from multiple devices while 
simultaneously maintaining k-anonymity for the individuals involved. 

Vikas Thammanna Gowda, Mason Lee, and Vanessa Campagna propose Enhanced Stratified Sam- 
pling (ESS), integrating k-anonymity, l-diversity, and t-closeness to preserve privacy in big data 
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publishing [12]. ESS generates data subsets, evaluating them based on privacy and information loss 
and selecting the optimal set for publication. This method enhances privacy while maintaining high 
data utility for large-scale data analysis without compromising privacy. The paper highlights several 
privacy risks associated with the publishing of big data, including 

1.  Attribute Disclosure: Individuals may be identified through their sensitive attributes, leading to 
unautho- rized access to personal information. This occurs when enough quasi-identifiers are 
present to re-identify individuals within a dataset. 

2.  Homogeneity Attacks: In scenarios where a sensitive attribute has a limited number of distinct 
values, attackers may infer the sensitive information of individuals belonging to small Equivalence 
Classes (ECs). This means that if all records in an EC have the same sensitive attribute value, it 
increases the risk of attribute disclosure. 

3.  Privacy Breaches: The mishandling of sensitive information can lead to privacy violations such as 
identity theft, discrimination against individuals, and financial losses related to exposed personal 
information. 

4.  Balancing Privacy and Data Usability: Ensuring privacy often involves generalizing or suppressing 
data, which in turn can lead to increased information loss and reduced data utility, making it 
challenging to extract meaningful insights from the published data. 

These risks underline the importance of developing effective methods for protecting privacy within 
the realm of big data publishing to safeguard sensitive information while still allowing for valuable 
data analysis. Abdul Majeed and Seong Oun Hwang present a new method for data publishing that 
combines differential privacy with k-anonymity in [13]. This paper tackles the issue of extracting 
sufficient knowledge from anonymized data while maintaining privacy by introducing a combined 
Differential Privacy (DP) and k-anonymity approach. The method separates the dataset into partitions 
that either violate privacy or do not, applying a relaxed privacy budget ϵ to numerical attributes in the 
non-privacy-violating partition while keeping most categorical attributes intact. Experiments 
conducted on three real-world datasets demonstrate that this approach retains 60.81% of the original 
data in its anonymized form, decreases privacy risks by 20.05%, and improves utility by 54.01% and 
15.33% when evaluated using Information Loss (IL) and accuracy metrics, respectively. The proposed 
hybrid scheme in the paper effectively balances data utility and privacy through several key 
mechanisms: 

1.  Partitioning Data: The scheme classifies the dataset into two partitions: non-privacy-violating and 
privacy- violating. In the non-privacy-violating partition, most of the data values are kept in their 
initial state, which helps to maintain data utility. In contrast, the privacy-violating partition 
undergoes minimal necessary anonymization, applying stringent privacy protections only where 
needed. 

2.  Relaxed Privacy Budget: A lenient privacy budget (ϵ) is utilized for numerical attributes within the 
partition that does not violate privacy, which allows for better preservation of the data’s original 
statistical properties. This approach effectively enhances the utility of the data while still adhering 
to privacy requirements. The privacy-violating partition, however, utilizes a more conservative 
privacy budget to ensure stronger privacy guarantees. 

3.  Minimization of Information Loss: The scheme is designed to minimize IL by carefully 
anonymizing only the necessary data portions. It aims to retain high accuracy and utility while 
safeguarding sensitive information against potential breaches. This is achieved by leveraging the 
diversity of sensitive attributes (SAs) and employing k-anonymity techniques that produce 
compact and diverse clusters. 
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Overall, the hybrid approach they proposed allows for effective anonymization without severely 
compromising the usefulness of the data, making it particularly suitable for data-hungry applications, 
such as AI. 

Table 1: Performance of Privacy-Preserving Techniques in Big Data 

Authors (Year) Methodology Key Contributions 

Raj, Anushree et 
al. (2019), 

k-Anonymity with 
MapReduce 

Demonstrates scalable k-anonymity using 
MapReduce to preserve privacy in cloud- 
based big data settings 

Kwatra & Torra (2022) 
Mondrian k-Anonymity and 
Decision Trees 
in Federated Learning 

Builds a privacy-preserving FL framework 
using local k-anonymized training and col- 
laborative decision tree fusion 

Gowda et al. (2024) 
ESS integrating k-Anonymity, 
l-Diversity, t-Closeness 

Addresses attribute disclosure, homogeneity 
attacks, and utility trade-offs in published big 
data 

Majeed & Hwang 
(2024) 

Hybrid of Differential Privacy 
and k- Anonymity 

Proposes partitioned anonymization with re- 
laxed ε for numerical attributes to optimize 
both privacy and utility 

The other sections are divided to explain the experimental results of our proposed hybrid approach 
for privacy preservation using the Mondrian algorithm and DP-CTGAN. Section 2 discusses the 
methodology for the proposed hybrid strategy, which includes a description of the research design 
and dataset. Section 3 illustrates the results and discussion of the hybrid privacy for big data 
publishing, including a comparison of data types and DP levels, while Section 4 depicts the paper’s 
conclusion. 
 
2. METHODOLOGY 

The emergence of data-driven applications has heightened concerns about personal privacy. This paper 
presents a two-phase privacy-preserving data publishing pipeline that combines k-anonymity and 
differential privacy. The suggested method protects privacy by first performing syntactic anonymization 
with the Mondrian algorithm, followed by semantic anonymization using a differentially private 
synthetic data generator. 

2.1. Research Design 

This work uses an experimental methodology to examine the effectiveness of two privacy-preserving 
approaches, k-anonymity and differential privacy, as applied to the Adult Income dataset. The study 
assesses confidentiality risk, data utility, and computing efficiency to obtain the following objectives: 

• To assess the effectiveness of k-anonymity (Mondrian) and differential privacy (DP-CTGAN) on 
sensitive datasets. 

• To assess the usefulness and privacy trade-offs of classical anonymization vs synthetic data 
production. 

• To create a hybrid pipeline that incorporates both technologies for increased privacy. 

The research design procedures are implemented in a methodical manner to ensure a structured and 
coherent approach throughout the project. This includes explicitly identifying the study problem, 
setting specified ob- jectives, and selecting acceptable data gathering and analysis procedures. The 
design also describes how to implement privacy-preserving approaches such as k-anonymity using the 
Mondrian algorithm and differential privacy via synthetic data generation. Each step is meticulously 
planned to ensure that the results are reliable and valid, that the data remains intact, and that the 
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research objectives are met. Following these procedures provides a logical foundation for the 
research, which improves the study’s overall rigor and effectiveness. 

2.1.1. Data Preprocessing 

Before the experiments were carried out, the data sets were carefully preprocessed to ensure consis- 
tency and quality of the data. Encoding categorical data, standardizing formats, managing missing 
values, and eliminating any irregularities or contradictions were all part of this. To prepare the data for 
an accurate application of the privacy-preserving approach and dependable experimental results, such 
preparation measures were necessary. 

• Remove direct identifiers. 

• Clean and normalize data. 

• Identify quasi-identifiers and sensitive attributes. 

2.1.2. Apply the Mondrian Algorithm to Implement k-Anonymity 

The Mondrian technique, which effectively achieves k-anonymity while maintaining data utility, was 
used to accomplish anonymization. In order to guarantee that each group comprises at least k 
indistinguishable items, this algorithm iteratively divides the dataset into smaller groups based on 
quasi-identifiers. Because of its multidimensional partitioning technique, which balances privacy 
protection with information loss, it works well with structured datasets. 

• Implement Mondrian multidimensional partitioning. 

• Choose appropriate values for k, which are 10 and 15. 

• Produce an anonymized data set. 

The following figure from [14] shows how partitioning occurs in the Mondrian algorithm. 

 

Figure 2: Illustration of Mondrian Multidimensional Partitioning 

2.1.3. Apply Differential Privacy using DP-CTGAN 

Deep generative models utilize neural networks to understand the features of a dataset and can 
produce synthetic data that closely mimics actual data, as shown in figure 3 [15]. To lower the chance 
of re-identification, the dataset was initially anonymized using the Mondrian algorithm, which satisfied 
k-anonymity.  

The DP-CTGAN, which further improves privacy by introducing differential privacy mechanisms during 
the data generation process, relied on this anonymized data as a more privacy-conscious basis for 
training. The result was synthetic data that protects individual privacy while maintaining statistical 
properties.  
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Key points to provide differential privacy are listed below: 

• Used the Mondrian-generalized dataset as input to DP-CTGAN. 

• Train a synthetic data generator with ϵ - differential privacy (tune ϵ values like 0.5, 1, 2). 

• Generate a synthetic dataset. 

 

Figure 3: DP-CTGAN Architecture 

The above figure illustrates the fundamental architecture of DP-CTGAN. Confidential training data is 
input into a conditional generator, which produces samples that adequately represent all potential 
discrete values.  

Con- currently, a random perturbation is introduced to the critic to ensure privacy safeguards. During 
preprocessing, mode-specific normalization is applied to continuous columns, allowing the data 
representation to capture complex distributions. The conditional generator addresses the issue of 
imbalanced categorical columns, facilitating more effective and uniform data generation. 

2.1.4. Hybrid Approach 

A two-stage privacy-preserving pipeline was used to examine the effectiveness of differential privacy 
and k-anonymity together. The Mondrian algorithm, a multidimensional partitioning method, was 
initially employed to anonymize the original dataset, ensuring that each record is unidentifiable from 
at least k - 1 other records concerning quasi-identifiers.  

The k-anonymized dataset created by this procedure reduces the possibility of re-identification via 
linkage attacks. In the second step, the k-anonymized data was used to train the DP-CTGAN model, 
which is an adaptation of the Conditional Tabular Generative Adversarial Network (CTGAN) that 
incorporates differential privacy guarantees.  

This approach satisfies formal differential privacy restrictions by synthesizing fresh, statistically 
comparable records and introducing calibrated noise to mask the contribution of individual data 
points.  
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To obtain synthetic data, mainly we followed the following steps. 

• Train DP-CTGAN on the k-anonymized dataset. 

• Measure whether combining methods improves or harms utility/privacy. 

This dual-layered solution seeks to find a balance between keeping data utility for downstream 
analytics and improving privacy protection beyond what either method can do on its own. By 
combining k-anonymity’s structural anonymization with differential privacy’s noise-based assurances, 
the technique aims to provide a more resilient solution to privacy concerns in data publishing and 
sharing. The following diagram shows the hybrid approach for enhanced big data privacy preservation. 

 

Figure 4: Hybrid Model for Privacy Preservation 

2.2. Dataset Description 

The UCI Adult Income dataset, often known as the” Census Income” dataset, is a popular benchmark in 
machine learning research, especially for classification tasks and privacy-preserving data processing. 
It is based on the US Census Bureau’s 1994 and 1995 Current Population Surveys and is hosted via the 
UCI Machine Learning Repository. The dataset consists of 32,561 occurrences and 15 attributes, with a 
combination of categorical and continuous variables. Its major goal is to forecast whether a person 
earns more than $50,000 per year, i.e., has an income of > $50,000, based on demographic and job 
characteristics. The income class acts as the binary target variable. An overview of the attributes is 
shown below. 
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Table 2: Description of Features and Corresponding Data Types 

Feature Data Type Definition Sample Value 

age Continuous Age of the individual 54 

workclass Categorical 
Employment Type (e.g., state-government, private, and self-employed-
not-incorporated) 

Private 

fnlwgt Continuous 
Final weight indicates the number of people in the population that the 
sampled individual represents 

70037 

education Categorical The highest level of education acquired (e.g., bachelor’s, HS grad) Doctorate 

education-num Continuous Numerical encoding of education 10 

Marital status Categorical Marital status (such as Widowed, Divorced, and Separated) Never-married 

occupation Categorical Occupation Type (e.g., Prof-speciality, Transport-moving, Other-service) Craft-repair 

relationship Categorical Family relationship (Own child, Unmarried, Other-relative) Not-in-family 

race Categorical Race of an individual (e.g., White, Other, Black) White 

sex Categorical Gender (Female and Male) Female 

capital-gain Continuous Income from capital gains 0 

capital-loss Continuous Losses from capital assets 3900 

hours-per-week Continuous Average hours worked per week 45 

native-country Categorical Country of origin (China, Mexico, United-States) Greece 

income Categorical Binary classification: <= 50K or > 50K > 50K 

The dataset includes missing items indicated by the placeholder’?’ in the columns workplace, occu- 
pation, and native country, but it does not include null values in the traditional sense. About 5.6% of 
the rows have them. Preprocessing is carried out prior to applying the Mondrian algorithm. 
 
3. EXPERIMENTAL OUTCOMES 

After preprocessing the dataset, we have the cleaned dataset, as we have removed duplicates and 
missing values. After that, with k values of 10, 15, and 20, the cleaned dataset is anonymized using 
the Mondrian algorithm. Attributes named age, work class, education num, marital status, occupation, 
race, sex, and native country are used as the quasi-identifiers. The attribute, occupation, is used as the 
sensitive attribute. With varying k values during anonymization, the Normalized Certainty Penalty 
(NCP) value differs. With higher k, the NCP value increases. Then the anonymized data are fed to the 
DP-CTGAN model with ϵ values 0.5, 1.0, and 2.00, and a synthetic data set is generated with each ϵ 
value. Smaller ϵ ensures stronger privacy but provides a lower data utility, and the larger ϵ provides 
weaker privacy but gives a higher data utility. With enhanced privacy, different loss curves for 
Discriminator Loss (D) and Generator Loss (G) are generated. 

3.1 Preprocessing for Data Cleaning 

A comprehensive preparation step was carried out to guarantee the quality and consistency of the 
dataset before privacy-preserving procedures were applied. The initial input dataset had instances of 
duplicate entries and missing values, which might negatively impact the quality of the synthetic data 
generation as well as the accuracy of the anonymization process. A sample of unprocessed initial data 
is shown in table 3, and after preprocessing dataset looks like table 4. To resolve this, we carried out 
the subsequent cleaning procedures: 

• Duplicate Removal: Full row comparisons were used to find and eliminate all duplicate records. 
Especially during the DP-CTGAN model’s training and partitioning in the k-anonymity phase, this 
step was essential to preventing bias or redundancy from being introduced by repeated entries. 

• Managing Missing Values: The dataset was modified to remove records missing any of the 
sensitive characteristics or quasi-identifiers. To preserve data integrity, we chose to delete 
missing values since imputing them could generate spurious patterns or skew sensitive 
distributions, particularly when differential privacy is restricted. 
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Table 3: Sample of Dataset Before Preprocessing 

age workclass fnlwgt education education.num marital.status occupation relationship race sex capital.
gain 

capital
.loss 

hours.pe
r.week 

native.country 

90 ? 77053 HS-grad 9 Widowed ? Not-in-family White Female 0 4356 40 United-States 

82 Private 132870 HS-grad 9 Widowed Exec-managerial Not-in-family White Female 0 4356 18 United-States 

66 ? 186061 Some-college 10 Widowed ? Unmarried Black Female 0 4356 40 United-States 

54 Private 140359 7th-8th 4 Divorced Machine-op-inspct Unmarried White Female 0 3900 40 United-States 

41 Private 264663 Some-college 10 Separated Prof-specialty Own-child White Female 0 3900 40 United-States 

34 Private 216864 HS-grad 9 Divorced Other-service Unmarried White Female 0 3770 45 United-States 

38 Private 150601 10th 6 Separated Adm-clerical Unmarried White Male 0 3770 40 United-States 

74 State-gov 88638 Doctorate 16 Never-married Prof-specialty Other-relative White Female 0 3683 20 United-States 

68 Federal-gov 422013 HS-grad 9 Divorced Prof-specialty Not-in-family White Female 0 3683 40 United-States 

Table 4: Sample of Dataset After Preprocessing 

age Workclass fnlwgt education edu cation.num marital.status 
occupation

 relationship 
race Sex capital.gain 

capital.l
oss 

hours.per.
wekeek 

native.country 

50 
Self-emp-not-inc 

83311 
Bachelors 13 Married-civ-spouse 

Exec-managerial 
Husband 

White Male 0 0 13 United-States 

38 Private 215646 HS-grad 9 Divorced 
Handlers-cleaners 

Not-in-family 
White Male 0 0 40 United-States 

53 Private 234721 11th 7 Married-civ-spouse 
Handlers-cleaners 

Husband 
Black Male 0 0 40 United-States 

28 Private 338409 Bachelors 13 Married-civ-spouse Prof-specialty Wife Black Female 0 0 40 Cuba 

37 Private 284582 Masters 14 Married-civ-spouse Exec-managerial Wife White Female 0 0 40 United-States 

49 Private 160187 9th 5 Married-spouse-absent 
Other-service Not-in-

family 
Black Female 0 0 16 Jamaica 

52 
Self-emp-not-inc 

209642 
HS-grad 9 Married-civ-spouse Exec-managerial Husband White Male 0 0 45 United-States 

31 Private 45781 Masters 14 Never-married Prof-specialty Not-in-family White Female 14084 0 50 United-States 

42 Private 159449 Bachelors 13 Married-civ-spouse Exec-managerial Husband White Male 5178 0 40 United-States 

37 Private 280464 Some-college 10 Married-civ-spouse Exec-managerial Husband Black Male 0 0 80 United-States 
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These cleaning procedures produced a uniform and clean dataset that was devoid of duplicate and 
missing information. As Mondrian can only handle numeric attributes So, categorical attributes are 
transformed to numeric attributes before anonymization.  

For example, Male and Female are transformed to 0, 1 during pre- processing. Then, after 
anonymization, 0 and 1 are transformed to Male and Female.  

The k-anonymization process, utilizing the Mondrian algorithm and the synthetic data creation using 
DP-CTGAN under differential privacy guarantees, is based on this cleaned dataset. 

3.2 Implementation of Mondrian Algorithm with DP-CTGAN Model 

The equations for loss D and loss G are used in the DP-CTGAN model as the following equations [9]. 

Discriminator Loss: 

LD = −Ex∼Pdata [log D(x|c)] − Ez∼Pz [log (1 − D(G(z|c)))] (1) 

Generator Loss: 

LG = −Ez∼Pz [log D(G(z|c))]                                                     (2) 

The symbols used in the equation bear the following meaning: 

• x is a real data sample, 

• z is a noise vector sampled from prior Pz, 

• c is the conditional vector (e.g., class or one-hot encoded attributes), 

• G(z|c) is the synthetic sample generated by the generator 

• D(x|c) is the discriminator’s predicted probability that the sample is real. 

Table 5 below shows that the Normalized Certainty Penalty (NCP) changes as the k-anonymity level 
increases. Every row represents a distinct value of k, and the corresponding NCP value indicates the 
degree of information loss brought on by generalization. 

Table 5: Changes in NCP Value with Varying K 

k-anonymity level NCP value 
k=5 8.30% 
k=10 11.24% 
k=15 13.24% 
k=20 15.03% 

The NCP value rises in tandem with the value of k. Accordingly, more generalization is needed at 
higher anonymity levels, which leads to a larger loss of information.  

The information loss at k=5, for instance, is comparatively minimal (8.30 %), indicating that only 
moderate generalization was required. The NCP increases to 15.03% when k=20, indicating that more 
data was generalized to satisfy the more stringent privacy requirement. The Mondrian algorithm 
assures that each equivalence class (a set of indistinguishable data) has at least k records.  

To satisfy higher k-values, merge more records into larger groupings. This results in more generalized 
attribute values. As a result, the NCP grows.The following table 6 compares three versions of a dataset, 
each processed using a different privacy- preserving methodology.  

It displays the associated privacy level based on the method employed and, when relevant, the 
differential privacy parameter epsilon (ϵ). 
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Table 6: Comparison of Data Types and DP Levels 

Dataset Epsilon Privacy Level 

Original NA Low 

k-Anonymized (k=10) NA Medium 

DP-CTGAN (ϵ=1.0) 1.0 High 

The original dataset contains raw microdata without any alteration, providing no formal privacy as- 
surances and hence categorized as low privacy. The k-anonymized dataset (k=10) generalizes quasi-
identifiers to make each record indistinguishable from at least nine others. This technique improves 
privacy by hiding actual attribute values, but it is still open to particular inference attacks, such as 
homogeneity and background knowledge. As a result, its privacy level is rated as average. Data 
synthesized using DP-CTGAN with a privacy budget of ϵ=1.0 provides optimal privacy protection. This 
method incorporates formal differential privacy guarantees by injecting controlled noise during model 
training, ensuring that any individual record’s contribution to the model output is theoretically limited. 
As a result, it ensures a high level of anonymity, making synthetic data resistant to both linking and 
inference attacks. The comparison emphasizes the trade-offs between data utility and privacy 
strength, with differential privacy emerging as the most reliable method when tight privacy guarantees 
are necessary. 

3.3 Validation of the Results 

The DP-CTGAN training behavior over 50 training epochs is depicted in the following figure 5. Generator 
loss, discriminator loss, and cumulative privacy budget (ϵ) are the three main tracked parameters. The 
Generator Loss (G), the Discriminator Loss (D), and Privacy Budget (ϵ) are explained in the following 
section. 

 

Figure 5: Nature of Loss in Privacy Budget during DP-CTGAN Training 

• Generator Loss (G): The generator loss, shown by the blue line with round markers, quantifies the 
gen- erator’s ability to create synthetic data that is realistic enough to trick the reviewer. At first, 
the loss is somewhat high, reaching its maximum around epoch 10. When the generator has 
not yet figured out the distribution of the actual data, it might cause early instability, which is 
common in GAN train- ing. The generator loss progressively drops with training, suggesting higher-
quality samples. The loss has decreased considerably by epoch 50, suggesting that the generator 
has improved at simulating the underlying data distribution while still adhering to privacy 
restrictions. 
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• Discriminator Loss (D): During training, the discriminator loss, indicated in orange with” ×” markers, 
stays low and largely constant. Epoch 10 shows a modest increase, indicative of early rivalry 
with the improved generator. Because the values are constantly modest, the critic can distinguish 
between fake and genuine data without overwhelming the generator. This consistency is important 
for DP-GAN training since variations in the critic’s performance may result in training divergence or 
waste of the privacy resource. 

• Privacy Budget (ϵ): On the secondary y-axis, the cumulative privacy budget (ϵ) is shown by the 
green dotted line. Stronger privacy guarantees are indicated by lower values of epsilon, a measure 
of privacy loss. ϵ rises about linearly in this training case, from 0.3 at epoch 1 to roughly 2.05 at 
epoch 45. A significant decline at epoch 50 might indicate the use of budget-aware training or early 
stopping, in which training is stopped or controlled to be within a certain privacy threshold (ϵ ¡ 2). 
This illustrates the intrinsic privacy-utility trade-off in DP training: privacy loss increases as the 
model is trained over longer periods to improve accuracy (utility). 

Alongside a regulated ϵ, the generator’s performance steadily improved, showing that high-utility 
synthetic data may be produced with stringent privacy requirements. A steady training dynamic is 
suggested by the comparatively consistent discriminator loss, which is essential in DP-GANs since 
gradient noise can cause training to become unstable. The graphic highlights that there is a bounded 
budget introduced by differential privacy, and that controlling ϵ is essential for regulatory compliance. 

 

Figure 6: Change in Privacy with Various Values of ϵ 

The above figure 6 illustrates the change in privacy with various values of ϵ in synthetic data gener- 
ation with the DP-CTGAN. The horizontal axis represents the privacy budget (ϵ), while the left vertical 
axis represents utility, which is calculated as the predicted accuracy of a downstream model trained 
on synthetic data. The right vertical axis indicates the normalized privacy level, defined as 1 −  ϵ . Higher 
values indicate stronger privacy assurances. It depicts a monotonic increase in utility as ϵ increases. At ϵ 
= 0.1, utility is roughly 

65%, while at ϵ = 5, it reaches around 83%. As privacy constraints are removed, the model’s utility 
improves, reflecting its enhanced capacity to capture important data patterns. The normalized privacy 
level decreases from 0.99 (ϵ=0.1) to 0.5 (ϵ=5), aligning with theoretical assumptions. These findings 
empirically support the well-known privacy-utility trade-off inherent in differential privacy methods. 
The privacy budget parameter (ϵ) determines the strength of privacy guarantees and, thus, the utility 
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of the data in these systems. Lower ϵ values increase privacy by adding noise to data production, 
offering better protection against re-identification 

attempts. However, enhanced privacy comes at the expense of lower data accuracy, which can 
severely impair downstream analytical or machine learning operations. The impact is especially 
noticeable for ϵ¡1, where noise can alter statistical properties. Higher ϵ values enable the synthetic data 
generator to preserve more specific in- formation about the original dataset, resulting in increased 
utility. In the context of DP-CTGAN, this translates to synthetic data that more correctly preserves 
feature distributions and correlations, leading to improved model performance on tasks like 
classification and regression. However, these increases in accuracy are coupled with a weakening of 
privacy assurances, as individual records in the training data have a greater influence on the output. 

Choosing an acceptable ϵ value depends on the situation, balancing data sensitivity with utility re- 
quirements for the application. To maintain strict privacy standards in fields like healthcare, 
banking, and social research, lower ϵ values (e.g., ϵ ≤ 1 are recommended for data with individually 
identifiable or sensitive features. Moderate ϵ levels (e.g., ϵ ∈ [2, 5] may be suitable for use cases with 
low risk of data leakage and high analytical precision, such as synthetic data for exploratory analysis, 
simulation, or algorithm development. Our research presents several noteworthy improvements and 
differences from the other publications, which may be summed up as follows in table 7 and table 8. 

Table 7: Performance Comparison of Our Method and Existing Work [10] 

Aspect Proposed Approach Findings in [10] 

Methodology 
Hybrid: k-anonymity (Mondrian) + 
differential privacy (DP-CTGAN); sequential 
process 

Focuses solely on k-anonymity us- ing the 
Mondrian algorithm 

Approach 
Layered privacy, balancing privacy 
and utility with synthetic data gen- eration 

Pure syntactic anonymization via k- 
anonymity, generalization, suppres- sion 

Results 
Demonstrates better utility via syn- 
thetic data under tight privacy con- straints 

Utility decreases ask increases; primarily 
aims to prevent re- identification 

Strength 
Combines structural anonymization 
with formal privacy guarantees, suited for 
high-risk domains 

Emphasizes the effectiveness of k- 
anonymity alone, easier to imple- ment 
but less robust against infer- ence attacks 

Table 8: Performance Comparison of Our Method and Existing Work [13] 

Aspect Proposed Approach Findings in [13] 

Methodology 
Hybrid approach; k-anonymity + 
synthetic data with differential pri- vacy 

Focuses on minimizing information loss in 
privacy-preserving data pub- lishing, 
possibly via optimization methods 

Approach 
Synthetic data generation trained on 
anonymized data, tailored to high privacy 
needs 

Optimization-driven, aims to pre- serve 
as much data utility as possi- ble with 
minimal distortion 

Results 
Balances data privacy and utility ef- 
fectively, suitable for sensitive ap- 
plications 

Achievesminimal utility loss, 
sometimes at the expense of in- creased 
computational complexity 

Distinctiveness 
Emphasizes layered privacy with 
Empirical validation for high- security 
contexts 

Focus on utility preservation via fine-
tuning of anonymization pa- rameters 

Essentially, our approach sets itself apart by combining sophisticated synthetic data generation with 
structural anonymization, offering a solid, empirically supported paradigm that targets high-risk data 
domains while retaining ontological utility. With differing degrees of empirical support, the other 
research leans either toward utility maximization, system deployment, or single-method approaches. 
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3.4 Discussion 

This study investigated a hybrid privacy-preserving strategy that protects sensitive tabular data by 
merging differential privacy (DP-CTGAN) and k-anonymity (Mondrian algorithm). According to the 
findings, every technique makes a distinct contribution to maintaining the harmony between data 
privacy and usefulness. The Mondrian algorithm was used to enforce group indistinguishability across 
quasi-identifiers, thereby reduc- ing the likelihood of direct re-identification. However, there was a 
discernible trade-off in data utility ask grew because of suppression and generalization. This aligns with 
the established drawbacks of k-anonymity, which, in the absence of other safeguards, finds it difficult 
to prevent attribute linking or probabilistic inference. These issues were resolved with the invention of 
DP-CTGAN, which offers robust probabilistic privacy guarantees through differential privacy. In 
particular, the synthetic data generated by DP-CTGAN limited information leakage while retaining 
valuable statistical patterns, even when trained on previously anonymized data. Data utility was 
shown to be directly affected by the privacy budget ϵ; lower ϵ values improved privacy but decreased 
data realism and model performance. All things considered, combining the two approaches creates a 
layered privacy framework in which DP-CTGAN offers formal probabilistic assurances and k-
anonymity serves as a structural privacy filter. This is especially helpful in high-risk applications where 
data release needs to be tightly regulated, such as financial analytics or healthcare. 
 
4. CONCLUSION 

By combining the advantages of both techniques to overcome their respective shortcomings, k-
anonymity and differential privacy improve data protection. By dividing records into equivalence 
classes with a minimum of k members, K-anonymity reduces the possibility of re-identification through 
linkage attacks and guarantees group indistinguishability.  

But when it relies just on quasi-identifiers, it is vulnerable to flaws like attribute disclosure and 
background knowledge attacks. A probabilistic layer of privacy assurance is added by using DP-CTGAN 
to introduce differential privacy.  

Regardless of past knowledge, it prevents information leakage at the record level by introducing 
controlled noise throughout the data generation process and synthesizing data that statistically 
resembles the original dataset. When data contains sensitive characteristics or quasi-identifiers are 
not adequately anonymized, this formal privacy guarantee guards against attribute inference and 
linking attacks that may not be prevented by k-anonymity alone. 

The hybrid framework combines these methods, utilizing the rigorous, mathematically based privacy 
promises of differential privacy to preclude statistical inferences and structural privacy filtering (k-
anonymity) to conceal individual records. The disclosed synthetic data is both relevant and resistant 
to different privacy threats thanks to this tiered privacy method, which improves overall data security, 
particularly in high-risk situations like healthcare or financial data exchange. The experimental results 
confirm that: 

• By improving group indistinguishability, raising k in the k-anonymity phase improves privacy; but, 
be- cause of increased generality, it also reduces data utility. 

• DP-CTGAN can generate high-utility synthetic data even under strict privacy limitations, proving 
its ability to maintain data usefulness as ϵ drops. 

• When compared to single-method baselines, the suggested hybrid framework, which combines k-
anonymity with differentially private synthetic data generation, offers an enhanced equilibrium 
between privacy and utility. The enhanced performance in various privacy risk metrics, including 
re-identification and at- tribute disclosure issues, supports this assertion. 
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These findings illustrate the complementary benefits of k-anonymity and differential privacy when 
used to- gether. The paradigm provides a realistic and scalable solution to privacy-preserving data 
dissemination, par- ticularly in areas where both privacy and analytical value are important.  

Future studies will concentrate on a few crucial aspects to improve the suggested approach’s 
applicability and resilience. To begin with, investi- gating new differential privacy algorithms like Re´nyi 
Differential Privacy, or Private Aggregation of Teacher Ensembles (PATE) may provide better trade-offs 
between data value and privacy assurances. Finally, a crucial ethical aspect is the incorporation of 
fairness and bias auditing methods into the pipeline for creating synthetic data.  

Promoting equal results in subsequent machine learning tasks requires making sure that synthetic 
datasets don’t reinforce or magnify preexisting biases in the original data. In order to facilitate the 
creation of just and reliable AI systems, future research will try to incorporate automated bias 
detection and mitigation strategies into the generation process. 
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