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Abstract 

In this paper, we discuss numerical experiment of absolute stability of various one and two steps 
method for ODEs and Fredholm equation. The Gauss Lobatto method for approximating the value of 
the integrals presented. Two and one dimensional case of spectral element method are presented. The 
proposed method provides the solution in terms of convergent series with easily computable 
components, as well as it possesses main advantage as compared to other existed methods. 
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1. INTRODUCTION 

A Fredholm Equation is defined as a type of nonlinear integral equation that involves functions within 
a specified domain and is commonly used in modern numerical methods for solving mathematical 
problems. In mathematics, the Fredholm integral equation is an integral equation whose solution gives 
rise to Fredholm theory, the study of Fredholm kernels and Fredholm operators. The integral equation 
was studied by Ivar Fredholm. A useful method to solve such equations, the Adomian decomposition 
method, is due to George Adomian. An inhomogeneous Fredholm equation of the second kind is given 
as 

 

Given the kernel K (x; t) and the function (x)  the problem is typically to find the function   The 
solution to a general Fredholm integral equation of the second kind is called an integral equation 
Neumann series. Fredholm equations arise naturally in the theory of signal processing, for example as 
the famous spectral concentration problem popularized by David Slepian.  
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The operators involved are the same as linear filters. They also commonly arise in linear forward 
modelling and inverse problems. In physics, the solution of such integral equations allows for 
experimental spectra to be related to various underlying distributions, for instance the mass 
distribution of polymers in a polymeric melt, or the distribution of relaxation times in the system [5, 
12, 13, 14,15, 16]. In addition, Fredholm integral equations also arise in fluid mechanics problems 
involving hydrodynamic interactions near finite-sized elastic interfaces. A specific application of 
Fredholm equation is the generation of photo-realistic images in computer graphics, in which the 
Fredholm equation is used to model light transport from the virtual light sources to the image plane. 
The Fredholm equation is often called the rendering equation in this context. Lobatto methods for the 
numerical integration of differential equations are named after Rehuel Lobatto. They are 
characterized by the use of approximations to the solution at the two end points tn and tn+1 of each 

subinterval of integration [tn, tn+1 ]: In numerical analysis, an n−point Gaussian quadrature rule, 
named after Carl Friedrich Gauss is a quadrature rule constructed to yield an exact result for 

polynomials of degree 2n − 1 or less by a suitable choice of the nodes xi and weights ωi for i = 1, …, 
n:  The spectral element method (SEM) is a formulation of the finite element method (FEM) that uses 
high-degree piecewise polynomials as basis functions. The spectral element method was introduced 
in a 1984 paper by A. T. Patera. 

In mathematics, in the area of numerical analysis, Galerkin methods are a family of methods for 
converting a continuous operator problem, such as a differential equation, commonly in a weak 
formulation, to a discrete problem by applying linear constraints determined by finite sets of basis 
functions. They are named after the Soviet mathematician Boris Galerkin [5, 12, 13, 14, 15, 16].  

This paper is organized as follows: Section 2 introduces the Gauss Lobatto method for approximating. 
Section 3 presented the viscosity spectral element method - 1D. Section 4 deals the spectral element 
method - 2D and 1-element and weak formulation. Section 5 we presented the spectral Element 
Method of 2D and 1 element. 
 
2. GAUSS LOBATTO METHOD FOR APPROXIMATING 

Gauss Lobatto is a method for approximating the value of the integrals  where  is a 

given; function through a linear transformation, the above integral can be reduced to

where not the same function. In this case Lobatto rule of the function  on [1,1] is 

 

where xi is the (i  1)th root derivative Legendre polynomial  Recall that the recursive 

relation to define the Legendre polynomial is: 
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and the weight ωi   is given by 

 

In this method (Gauss Lobatto), the points xi are chosen such that  

 

The boundary value problem that will be considered in in our study is: 

 

To get the coefficients  we apply three different methods: spectral collocation 
method, spectral method of Galerkin and integral method in all cases we get a system that must be 
solved AU = F. The solution of (3) is expanded using Lagrange interpolations based on the Gauss-

Lobatto Legendre points where 
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we have N + 1 unknowns and N - 1 equations. Unfortunately, the previous system cannot be solved 
since the number of equations is large then the number of unknowns, to solve this problem we add 
two equations comes from boundary conditions [5, 12, 13, 14, 15, 16]. 

2.1 Boundary Conditions 

First boundary conditions is 

 

using  

Second boundary conditions: 
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Now, the matrix equation will be solved to obtain the approximation solution. Note that if the size of 
the matrix is large enough one can consider iterative methods. In our numerical presentation, we will 
present both cases, this allow the reader to make a difference between small N and large N. Moreover, 
we will discuss later some numerical schemes to get a rapid solution (in iteration counts).  
 
3. THE VISCOSITY SPECTRAL ELEMENT METHOD - 1D 

Problem: 

 

We will use the spectral method to find the approximate solution using " Gauss Lobbato points" we 
define the set 

 
where PN([-1; 1]) is the space of polynomials of degree at most N on [-1,1]. We multiply both sides of 

equation (10) with as test function, we get   

 
3.1 Spectral element method 1D: Weak formulation  

 
The approximate solution is expanded using lagrange interpolants based on the Gauss Lobatto 
Legendre points [5, 12, 13, 14, 15, 16]: 
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 Gauss-Lobatto Quadrature rule: 

 

3.2 Spectral element method - 1D 
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4. SPECTRAL ELEMENT METHOD - 2D AND 1-ELEMENT AND WEAK FORMULATION 

Let the Poission equation 

 
 
5. SPECTRAL ELEMENT METHOD OF 2D AND 1 ELEMENT 

The differentiation matrix defined as: 
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5.1 Spectral element method - 2D and 2- element 

Let 
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5.2 Two and Four elements of subdomains  1 and 2 

Let 

 

where (x; y) ∈ . We decompose  into two non-overlapping subdomains 1 and 2 
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Let K the number of subdomains. In our work K = 2 (2 elements), k = 4 (4 elements), we define the 
transformation 
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we deduce 
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